

Visualization of Hyperbolic Tessellations

Jakob von Raumer | April 9, 2013

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

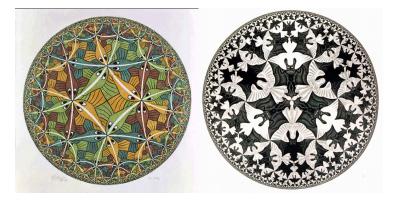


Figure: "Circle Limit III" and "Circle Limit IV" by M. C. Escher, 1959 and 1960

Drawing hyperbolic tessellations

April 9, 2013

2/29

Escher's Art

- Escher's works were inspired by illustrations in a book by H.S.M. Coxeter
- He used woodcuts to replicate the tiles
- To his son George:

I had an enthusiastic letter from Coxeter about my colored fish, which I sent him. Three pages of explanation of what I actually did It's a pity that I understand nothing, absolutely nothing of it.

Aims of my thesis

- Document and summarize theoretical basics of hyperbolic tessellations
- Construct suitable tiles
- Implement algorithms to replicate those

Comparison: Euclidean and hyperbolic Geometry

Fuclidean

- For a line g there is exactly one line parrallel to g that contain a point $p \notin g$.
- Each triangle has an angle sum of π .

Hyperbolic

- For a line g there are more than one lines parallel to g that contain a point $p \notin g$.
- Each triangle has an angle sum of $< \pi$.

Comparison: Euclidean and hyperbolic Geometry

Length of a path $\gamma : [0, 1] \rightarrow \mathbb{H} := \{z \in \mathbb{C} \mid \Im(z) > 0\}$:

EuclideanHyperbolic $L(\gamma) = \int_0^1 |\gamma'(t)| \, \mathrm{d}t$ $L(\gamma) = \int_0^1 \frac{|\gamma'(t)|}{\Im(\gamma(t))} \, \mathrm{d}t$

The distance of two points $a, b \in \mathbb{H}$ is the length of the shortest path between them.

EuclideanHyperbolicd(a,b) = |b-a| $d(a,b) = \ln \frac{|a-\bar{b}|+|a-b|}{|a-\bar{b}|-|a-b|}$

Motivation Hyperbolic Geometry 000 Determined and the second sec Drawing hyperbolic tessellations

April 9, 2013

6/29

Geodesics on the upper half-plane

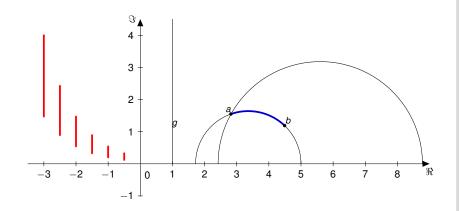


Figure: Geodesics on the upper half-plane.

Motivation Hyperbolic Geometry

Drawing hyperbolic tessellations

From the upper half-plane to the Poincaré disk model

The continuous map $f : \mathbb{H} \to \mathbb{U} : z \mapsto \frac{zi+1}{z+i}$ induces a bounded presentation of \mathbb{H} .

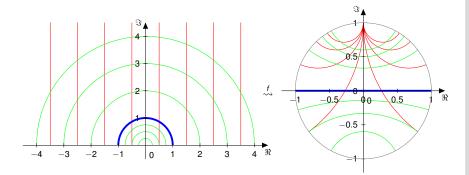


Figure: Geodesics on the upper half-plane and their correspondents on the Poincaré disk model.

Motivation Hyperbolic Geometry Jakob von Raumer - Visualization of Hyperbolic Tessellations

Drawing hyperbolic tessellations 8/29

The Beltrami-Klein model

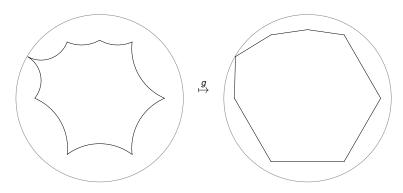


Figure: A polygon, shown in the Poincaré disk model and in the Beltrami-Klein model

Motivation Hyperbolic Geometry

Drawing hyperbolic tessellations

April 9, 2013

9/29

Isometries on $\mathbb H$

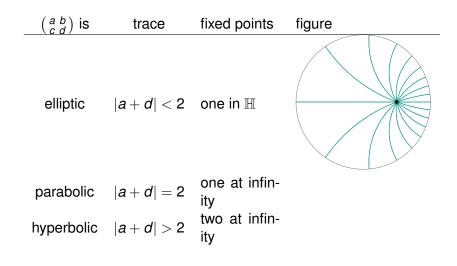
Theorem

The isometries on \mathbb{H} are a group isomorphic to $PS^*L(2,\mathbb{R}) := S^*L(2,\mathbb{R}) / \{\pm I_2\}.$ The orientation preserving isometries on \mathbb{H} are isomorphic to $PSL(2,\mathbb{R}) := SL(2,\mathbb{R}) / \{\pm I_2\}.$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \mathbb{R})$ corresponds to the *Möbius transformation* $z \mapsto \frac{az+b}{cz+d}$ Examples:

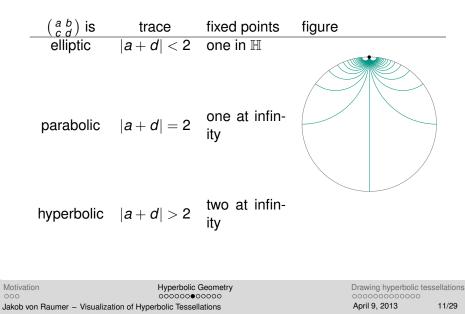
- Translation $z \mapsto z + 1$
- Dilation $z \mapsto 2z$
- Rotation $z \mapsto -\frac{1}{z}$

3 types of transformations

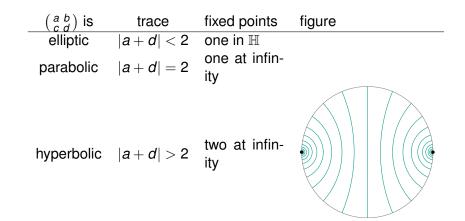


Motivation Hyperbolic Geometry 000000000000 Jakob von Raumer - Visualization of Hyperbolic Tessellations

Drawing hyperbolic tessellations 11/29



3 types of transformations



April 9, 2013

11/29

Fuchsian and Kleinian groups

- A discrete subgroup Γ of *PS***L*(2, ℝ), is called *Kleinian group*.
- If additionally Γ ≤ PSL(2, ℝ), then it's called Γ Fuchsian group.

Fundamental domains

Definition

A closed subset $F \subseteq \mathbb{H}$ is a *fundamental domain* for Γ , iff:

$$\Gamma \cdot F := \bigcup_{T \in \Gamma} T(F) = \mathbb{H}.$$

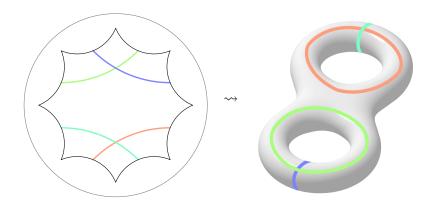
• For all $T \in \Gamma$, F and T(F) intersect only in their boundary.

If *F* is a fundamental domain for Γ , then $\{T(F) \mid T \in \Gamma\}$ is called a *tessellation*.

Fuchsian Groups: Elliptic and parabolic subgroups

- *Elliptic subgroup*: $\langle T \rangle \leq \Gamma$ where T is elliptic
- *Parabolic subgroup*: $\langle T \rangle \leq \Gamma$ where T is parabolic
- Maximal elliptic or parabolic subgroups which are conjugate to each other, have the same order. They are called *periods* of Γ

The orbit space of a Fuchsian group



Motivation Hyperbolic Geometry

Drawing hyperbolic tessellations

April 9, 2013

15/29

The signature of a Fuchsian group

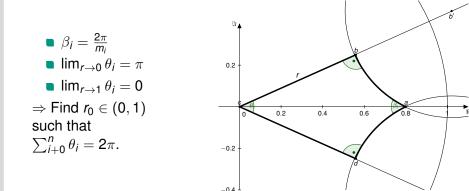
Definition

Let Γ be a Fuchsian group with periods $m_1, \ldots, m_n \in \mathbb{N}_0 \cup \{\infty\}$, $m_1 \leq \ldots \leq m_n$ and genus $g \in \mathbb{N}_0$. Then the vector (g, m_1, \ldots, m_n) is called the *signature* of Γ .

The program should create tessellations which

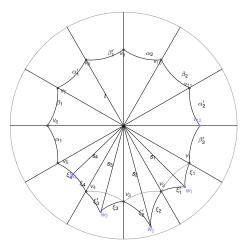
- are induced by a Fuchsian group with a given signature or
- consists of polygons with a given sequence of inner angles $\frac{2\pi}{m_i}$.

Polygons for tiling by reflections



Motivation Hyperbolic Geometry

Polygons for tiling by Fuchsian groups

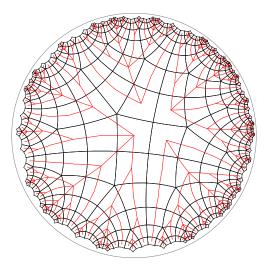


Motivation Hyperbolic Geometry

Replication algorithm by Dunham

- It's based on a depth-first search.
- It's a "combinatorial" algorithm: Approach only depends on the corner valencies of the polygon.
- It can replicate arbitrary polygons, except for:
 - Triangular fundamental domains or
 - at least one corner valency of three.

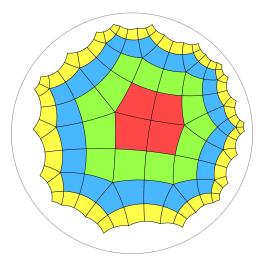
Search trees of the Dunham algorithm



Motivation Hyperbolic Geometry

Drawing hyperbolic tessellations

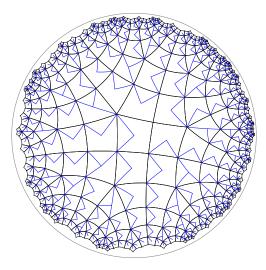
Separating the tessellation into layers



Motivation Hyperbolic Geometry

Drawing hyperbolic tessellations

Search trees of the Dunham algorithm



Motivation Hyperbolic Geometry

Basic approach:

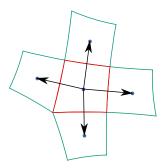
- Transform each tile by all transformations mapping it to edge adjacent tiles
- Discard tiles we already met

Three data structures:

- Liste inactivePolys: Polygons yet expanded
- Priority queue activePolys: Polygons still to be expanded
- Hash set midpoints: Midpoints of polygons we met so far

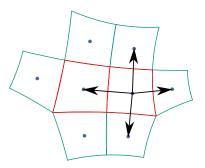
Three data structures:

- Liste inactivePolys: Polygons yet expanded
- Priority queue activePolys: Polygons still to be expanded
- Hash set midpoints: Midpoints of polygons we met so far

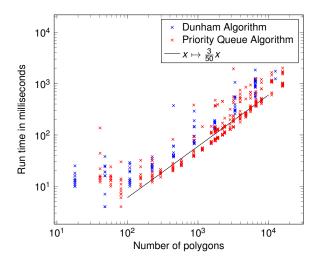


Three data structures:

- Liste inactivePolys: Polygons yet expanded
- Priority queue activePolys: Polygons still to be expanded
- Hash set midpoints: Midpoints of polygons we met so far

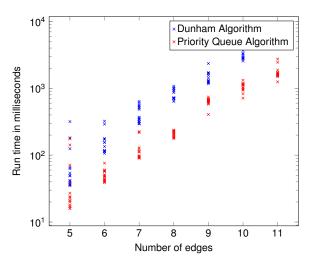


Comparing the run time



Motivation Hyperbolic Geometry

Comparing the run time



Motivation Hyperbolic Geometry

Drawing hyperbolic tessellations

Outlook

Questions and Work still to accomplish:

- Try to solve the restrictions of the Dunham algorithm
- Optimizing the approximation used in the creation of the base polygons
- Replicate arbitrary vector graphics on the base polygons
- Interactive zoom and pan
- Adapting the stroke width according to hyperbolic geometry

On something completely unrelated...

ontario-baden-württemberg student exchange

obw.ouinternational.ca

Motivation Hyperbolic Geometry

Drawing hyperbolic tessellations