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Escher’s Art

Figure: “Circle Limit III” and “Circle Limit IV” by M. C. Escher, 1959
and 1960
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Escher’s Art

Escher’s works were inspired by illustrations in a book by
H.S.M. Coxeter
He used woodcuts to replicate the tiles
To his son George:

I had an enthusiastic letter from Coxeter about my
colored fish, which I sent him. Three pages of
explanation of what I actually did ... . It’s a pity
that I understand nothing, absolutely nothing of it.
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Aims of my thesis

Document and summarize theoretical basics of hyperbolic
tessellations
Construct suitable tiles
Implement algorithms to replicate those
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Comparison: Euclidean and
hyperbolic Geometry

Euclidean
For a line g there is exactly
one line parrallel to g that
contain a point p /∈ g.
Each triangle has an angle
sum of π.

Hyperbolic
For a line g there are more
than one lines parallel to g
that contain a point p /∈ g.
Each triangle has an angle
sum of < π.
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Comparison: Euclidean and
hyperbolic Geometry

Length of a path γ : [0,1]→ H := {z ∈ C | =(z) > 0}:

Euclidean

L(γ) =

∫ 1

0
|γ′(t)| dt

Hyperbolic

L(γ) =

∫ 1

0

|γ′(t)|
=(γ(t))

dt

The distance of two points a,b ∈ H is the length of the shortest
path between them.

Euclidean

d(a,b) = |b − a|

Hyperbolic

d(a,b) = ln
|a− b̄|+ |a− b|
|a− b̄| − |a− b|
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Geodesics on the upper half-plane

<−3 −2 −1 1 2 3 4 5 6 7 8

=

−1

1

2

3

4

0

a
bg

Figure: Geodesics on the upper half-plane.
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From the upper half-plane to the
Poincaré disk model

The contiuous map f : H→ U : z 7→ zi+1
z+i induces a bounded

presentation of H.
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Figure: Geodesics on the upper half-plane and their correspondents
on the Poincaré disk model.
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The Beltrami-Klein model

g7→

Figure: A polygon, shown in the Poincaré disk model and in the
Beltrami-Klein model
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Isometries on H

Theorem
The isometries on H are a group isomorphic to
PS∗L(2,R) := S∗L(2,R)/ {±I2}.
The orientation preserving isometries on H are isomorphic to
PSL(2,R) := SL(2,R)/ {±I2}.(

a b
c d

)
∈ PSL(2,R) corresponds to the Möbius transformation

z 7→ az+b
cz+d

Examples:
Translation z 7→ z + 1
Dilation z 7→ 2z
Rotation z 7→ −1

z
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3 types of transformations

(
a b
c d

)
is trace fixed points figure

elliptic |a + d | < 2 one in H

parabolic |a + d | = 2
one at infin-
ity

hyperbolic |a + d | > 2
two at infin-
ity
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Fuchsian and Kleinian groups

A discrete subgroup Γ of PS∗L(2,R), is called Kleinian
group.
If additionally Γ ≤ PSL(2,R), then it’s called Γ Fuchsian
group.
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Fundamental domains

Definition
A closed subset F ⊆ H is a fundamental domain for Γ, iff:

Γ · F :=
⋃

T∈Γ T (F ) = H.
For all T ∈ Γ, F and T (F ) intersect only in their boundary.

If F is a fundamental domain for Γ, then {T (F ) |T ∈ Γ} is called
a tessellation.
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Fuchsian Groups: Elliptic and
parabolic subgroups

Elliptic subgroup: 〈T 〉 ≤ Γ where T is elliptic
Parabolic subgroup: 〈T 〉 ≤ Γ where T is parabolic
Maximal elliptic or parabolic subgroups which are
conjugate to each other, have the same order. They are
called periods of Γ

Motivation Hyperbolic Geometry Drawing hyperbolic tessellations

Jakob von Raumer – Visualization of Hyperbolic Tessellations April 9, 2013 14/29



The orbit space of a Fuchsian group
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The signature of a Fuchsian group

Definition
Let Γ be a Fuchsian group with periods m1, . . . ,mn ∈ N0 ∪ {∞},
m1 ≤ . . . ≤ mn and genus g ∈ N0. Then the vector
(g,m1, . . . ,mn) is called the signature of Γ.
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The program’s features

The program should create tessellations which
are induced by a Fuchsian group with a given signature or
consists of polygons with a given sequence of inner angles
2π
mi

.
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Polygons for tiling by reflections

βi = 2π
mi

limr→0 θi = π

limr→1 θi = 0
⇒ Find r0 ∈ (0,1)
such that∑n

i+0 θi = 2π.
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Polygons for tiling by Fuchsian
groups
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Replication algorithm by Dunham

It’s based on a depth-first search.
It’s a “combinatorial” algorithm: Approach only depends on
the corner valencies of the polygon.

It can replicate arbitrary polygons, except for:
Triangular fundamental domains or
at least one corner valency of three.
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Search trees of the Dunham
algorithm
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Separating the tessellation into
layers
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Search trees of the Dunham
algorithm
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Repliction using a priority queue

Basic approach:
Transform each tile by all transformations mapping it to
edge adjacent tiles
Discard tiles we already met
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Repliction using a priority queue
Three data structures:

Liste inactivePolys: Polygons yet expanded
Priority queue activePolys: Polygons still to be expanded
Hash set midpoints: Midpoints of polygons we met so far
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Comparing the run time
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Comparing the run time
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Outlook

Questions and Work still to accomplish:
Try to solve the restrictions of the Dunham algorithm
Optimizing the approximation used in the creation of the
base polygons
Replicate arbitrary vector graphics on the base polygons
Interactive zoom and pan
Adapting the stroke width according to hyperbolic geometry
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On something completely unrelated...

obw.ouinternational.ca
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