Karlsruhe Institute of Technology

Visualization of Hyperbolic Tessellations

Jakob von Raumer | April 9, 2013

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT - University of the State of Baden-Wuerttemberg and www.kit.edu
National Laboratory of the Helmholtz Association


http://www.kit.edu

I Escher’s Art
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Figure: “Circle Limit 11" and “Circle Limit IV” by M. C. Escher, 1959
and 1960
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I Escher’s Art

m Escher’s works were inspired by illustrations in a book by
H.S.M. Coxeter

m He used woodcuts to replicate the tiles
m To his son George:

I had an enthusiastic letter from Coxeter about my
colored fish, which | sent him. Three pages of
explanation of what | actually did ... . It's a pity
that | understand nothing, absolutely nothing of it.
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I Aims of my thesis A“("

@ Document and summarize theoretical basics of hyperbolic
tessellations

a Construct suitable tiles
a Implement algorithms to replicate those
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Comparison: Euclidean and ;\KlT

hyperbolic Geometry

Euclidean

a For aline g there is exactly
one line parrallel to g that
contain a point p ¢ g.

a Each triangle has an angle
sum of 7.
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Hyperbolic

m For aline g there are more
than one lines parallel to g
that contain a point p ¢ g.

m Each triangle has an angle
sum of < 7.
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Compari§on: Euclidean and AT
hyperbolic Geometry

Length of apath v : [0,1] - H:= {z € C|3J(z) > 0}:

Euclidean Hyperbolic
1 1 !
Lo) = [ at Loy = [ gt

The distance of two points a, b € H is the length of the shortest
path between them.

) Hyperbolic
Euclidean P
la—b|+ |a— b
d(a,b)=1|b—a d(a,b) =In =
(ab)=|b-a , a_b_la_b)
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I Geodesics on the upper half-plane AT
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Figure: Geodesics on the upper half-plane.
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Frc?m th? upper half-plane to the AT
Poincare disk model

The contiuous map f : Hl — U : z ~ Z£! induces a bounded
presentation of H.
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Figure: Geodesics on the upper half-plane and their correspondents
on the Poincaré disk model.
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I The Beltrami-Klein model AT
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Ja

Figure: A polygon, shown in the Poincaré disk model and in the
Beltrami-Klein model
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I Isometries on H (T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Theorem

The isometries on H are a group isomorphic to

PS*L(2,R) := S*L(2,R)/ {£h}.

The orientation preserving isometries on H are isomorphic to
PSL(2,R) := SL(2,R)/{xh}.

(2b) e PSL(2,R) corresponds to the Mébius transformation

az+b
Z—= cz+d

Examples:
a Translation z — z + 1
a Dilation z — 2z
a Rotation z — —

1
z
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I 3 types of transformations IT

(ab)is trace  fixed points  figure

elliptic la+d| <2 oneinH

. one at infin-
parabolic |a+d| =2 ity
. two at infin-
hyperbolic |a+d| > 2 ity
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I 3 types of transformations IT

(2b)is trace fixed points  figure
elipic  |a+d/ <2 oneinH

4 o
. one at infin- ~_ |
parabolic |a+d|=2 .
ity
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I 3 types of transformations AIT

(2b)is trace fixed points  figure
elliptic la+d| <2 oneinH
. one at infin-
parabolic |a+d| =2 ity
. two at infin- RN
hyperbolic |a+ d| > 2 ity EEEE
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I Fuchsian and Kleinian groups ST

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

m A discrete subgroup I of PS*L(2,R), is called Kleinian

group.
m If additionally ' < PSL(2,R), then it’s called I' Fuchsian
group.
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I Fundamental domains AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition
A closed subset F C H is a fundamental domain for T, iff:
@l Fi=Ugp T(F)=H.
m Forall T €T, Fand T(F) intersect only in their boundary.

If Fis a fundamental domain for I', then {T(F)| T € I'} is called
a tessellation.
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Fuchsian Groups: Elliptic and ST
parabolic subgroups e

m Elliptic subgroup: (T) < T where T is elliptic
m Parabolic subgroup: (T) < T where T is parabolic

m Maximal elliptic or parabolic subgroups which are
conjugate to each other, have the same order. They are

called periods of '
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I The orbit space of a Fuchsian group
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I The signature of a Fuchsian group AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Definition

Let I be a Fuchsian group with periods my, ..., m, € Ng U {c0},
my < ... < mpandgenus g € Np. Then the vector

(g, mq,...,mp) is called the signature of T.
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I The program’s features

The program should create tessellations which

m are induced by a Fuchsian group with a given signature or

m consists of polygons with a given sequence of inner angles
2
Fj'
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I Polygons for tiling by reflections AT

Karlsruhe Institute of Technology
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I Polygons for tiling by Fuchsian ST
groups =\if
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Replication algorithm by Dunham AUT

m It's based on a depth-first search.
a It's a “combinatorial” algorithm: Approach only depends on
the corner valencies of the polygon.
It can replicate arbitrary polygons, except for:
a Triangular fundamental domains or
m at least one corner valency of three.
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Search trees of the Dunham

algorithm
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Separating the tessellation into AT
layers ~ Eems ,
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Search trees of the Dunham
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I Repliction using a priority queue AUT

Basic approach:

a Transform each tile by all transformations mapping it to
edge adjacent tiles

m Discard tiles we already met
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I Repliction using a priority queue AIT

stitute of Technology

Three data structures:
m Liste inactivePolys: Polygons yet expanded
m Priority queue activerolys: Polygons still to be expanded
a Hash set midpoints: Midpoints of polygons we met so far
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I Comparing the run time
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I Comparing the run time AT
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Outlook AT
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Questions and Work still to accomplish:
m Try to solve the restrictions of the Dunham algorithm

a Optimizing the approximation used in the creation of the
base polygons

m Replicate arbitrary vector graphics on the base polygons
m Interactive zoom and pan
m Adapting the stroke width according to hyperbolic geometry
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I On something completely unrelated...  KIT

0 bw ontario-baden-wiirttemberg student exchange

obw.oulnternational.ca
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