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Setting

We assume that we work in a type theory supporting:
Universe(s) U
Π-types (dependent functions) (x : A)→ B(x) for A : U and B : A→ U
Σ-types (dependent pairs) (x : A)× B(x) for A : U and B : A→ U
Indexed W-types (generalized well-founded trees)
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Inductive Families

Inductive families are a way to define data types in dependently typed languages.
Prime example: The type of natural numbers N : U with constructors 0 : N and
S : N→ N, admitting an eliminator of the following type:

P : N→ U p0 : P(z) pS : (n : N)→ P(n)→ P(S(n))

elimN(P,p0,pS) : (n : N)→ P(n)

with reduction rules stating elimN(P,p0,pS)(0) = p0 and
elimN(P,p0,pS)(S(n)) = pS(elimN(P,p0,pS)(n)) for alll n : N.
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Inductive Families
We want to find a description of Inductive Types encompassing:

Plain inductive types like N : U ,
inductive families like the vectors Vec : N→ U on a type A : U with
constructors

nil : Vec(0) and
cons : Vec(n)→ A→ Vec(n + 1), and

mutually defined type families like predicates for evenness and oddness
isEven, isOdd : N→ U with constructors

evenZero : isEven(0)

evenS : {n : N} → isOdd(n)→ isEven(S(n))

oddS : {n : N} → isEven(n)→ isOdd(S(n)).
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Inductive Families

What the definition should avoid:
Constructors which are not strictly positive, such as a type A : U with a
constructor f : (A→ 2)→ A
Having to encode/uncurry constructors like f : A→ A→ A into f : A× A→ A.
Having to encode mutual types into a single indexed type.
Resorting to a schematic description that can’t easily be internalized.
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Inductive Families

Each inductive definition consists of
A list of sorts to be defined (sort constructors, formation rules)
A list of (point) constructors (introduction rules)
A (dependent) elimination rule (induction rule)
Some computation rules (reduction rules)
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Signatures for Inductive Families

Idea: Inductive definitions look like pieces (contexts) of type theoretic syntax
(Kaposi & Kovács, Higher Inductive-Inductive Types)
Want to have a small type theory for the description of inductive families.
The syntax of this small type theory is to be given inductively as well:
Welltyped syntax!
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Syntax of Signatures – Sorts

Have sort types TyS generated by

U : TyS

T : U B : T → TyS

Π̂S(T , B) : TyS

and sort contexts ConS as lists

· : ConS

Γs : ConS B : TyS

(Γs B B) : ConS
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Syntax of Signatures – Sort Terms

We can refer to the sorts in a context using typed de-Bruijn-variables, and by
applying type families:

Γs : ConS B : TyS

var(vz) : TmS((Γs,B),B)

var(v) : TmS(Γs,B)

var(vs(v)) : TmS((Γs,B′),B)

t : TmS(Γs, Π̂S(T , B)) τ : T
t(τ) : TmS(Γs,B(τ))
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Examples for Sort Contexts

For natural numbers: ·B U
For vectors: ·B Π̂S(N, λn.U)

For parity: ·B Π̂S(N, λn.U)B Π̂S(N, λn.U)
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Syntax of Signatures – Point
Constructors

Point constructors (“point types”) TyP consist of
Elements of the sorts in consideration:

a : TmS(Γs,U)

El(a) : TyP(Γs)

Functions with an “external” domain:

T : U B : T →TyP(Γs)

Π̂P(T , B) : TyP(Γs)

Recursive functions with a “small” domain:

a : TmS(Γs,U) A : TyP(Γs)

(a⇒P A) : TyP(Γs)
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Syntax of Signatures – Point
Constructors

We again collect a series of point constructors in a list ConP:

Γs : ConS

· : ConP(Γs)

Γ : ConP(Γs) A : TyP(Γs)

(ΓB A) : ConP(Γs)
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Examples for Point Contexts

For natural numbers with a sort context (·B U) we have

El(var(vz))B var(vz)⇒P El(var(vz))

For parity, with a sort context (·B Π̂S(N, λn.U)B Π̂S(N, λn.U)) we want

·B El(var(vs(vz)))

BΠ̂P(N, λn. var(vz)(n)⇒P El(var(vs(vz))(n + 1)))

BΠ̂P(N, λn. var(vs(vz))(n)⇒P El(var(vz)(n + 1))).
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Examples for Point Contexts

For natural numbers with a sort context (·B N : U) we have

El(N)B N⇒P El(N)

For parity, with a sort context (·B isEven : Π̂S(N, U)B isOdd : Π̂S(N, U)) we
want

·B El(isEven(0))

BΠ̂P(N, λn. isOdd(n)⇒P El(isEven(n + 1)))

BΠ̂P(N, λn. isEven(n)⇒P El(isOdd(n + 1))).
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Example: Algebras of the Natural
Number Signature

We can now form the standard model of the signatures in the “outer” type theory:

(·B N : U)A ≡ 1× U

and for (?,N) : 1× U have

(·B El(N)B N⇒P El(N))A(?,N) ≡ 1× N × (N → N)

 Each algebra admits the sort and point constructor. But not necessarily an
eliminator!
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Displayed Algebras

The input data for the eliminator is held in what we call a displayed algebra over a
given algebra:
Take a sort algebra (?,N) and a point algebra (?, z, s) over the natural numbers
signature. Then,

Γs
D(?,N) ≡ (P : N → U) and

ΓD(?, z, s)(P) ≡ P(z)× ((n : N)→ P(n)→ P(s(n)))

 Displayed algebras specify the input for an induction. But what is the type of the
corresponding output?
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Sections of Displayed Algebras

Sections of displayed algebras represent the output of eliminators:
Assume

sort and point algebras (?,N) and (?, z, s) for the natural numbers,
and furthermore displayed algebras (?,P) and (?,pz ,ps) with P : N → U ,
pz : P(z) and ps : (n : N)→ P(n)→ P(s(n)).

Then, the sections are

Γs
S(?,P) ≡ ((n : N)→ P(n)) and

ΓS(?,pz ,ps)(f ) ≡ (f (z) = pz)× ((n : N)→ f (s(n)) = ps(n)).
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Existence of Inductive Families
Theorem (Existence of Inductive Families)

For every signature of inductive families given by a sort context Ωs : ConS and
point context Ω : ConP(Ωs), there are are sort and point constructors in the form of

conS(Ω) : Ωs
A and

con(Ω) : ΩA (conS(Ω))

such that for each displayed algebra given by motives ωd
s : Ωs

D(conS(Ω)) and
methods ωd : ΩD(ωd

s , con(Ω)) we have an eliminator given by sections

elimS(Ω, ωd
s ) : Ωs

S(conS(Ω), ωd
s ) with

elim(Ω, ωd ) : ΩS(elimS(Ω, ωd
s ), con(Ω), ωd ).
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Proof of Existence

We derive the existence from the presence of indexed W-types
1. Extend syntax with a substitution calculus

and terms for point constructors TmP.
2. Represent extended syntax using indexed W-types.
3. Construct con(Ω) term model of the syntax: For a term a : TmS(Ωs,U) set

con(a) :≡WTmP(Ωs,El(a)).
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Further Results

What did we do with this notion of Inductive Families?
Syntax and existence proof have been formalized in Agda.
We used our definition as a target for a formal treatment of type erasure on
inductive-inductive types.

Further ideas:
Prove various results about inductive types (Lambek’s lemma, . . . )
Allow infinitary constructors like f : (N→ A)→ A
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Thank you for your attention!
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