Coherence via Well-Foundedness

- Taming Set-Quotients in Homotopy Type Theory

35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) Nicolai Kraus ^{1,2} Jakob von Raumer ¹ | June 11, 2020

¹UNIVERSITY OF NOTTINGHAM, ²UNIVERSITY OF BIRMINGHAM

A Graph Theoretic Problem

Noetherian Cycle Induction

Application: Free Groups

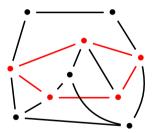
A Graph Theoretic Problem 000 N. Kraus, J. von Raumer – Coherence via Well-Foundedness Noetherian Cycle Induction

Application: Free Groups

June 11, 2020

General Problem

Consider paths in a graph.



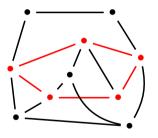
If we want to prove a property...

- for all paths: Induction!
- for all closed paths: how???

Noetherian Cycle Induction

General Problem

Consider paths in a graph.



If we want to prove a property...

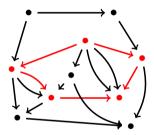
- for all paths: Induction!
- for all closed paths: how???

Topic of this talk:

- Approach for a special case of this problem
- Applications in homotopy type theory (HoTT)

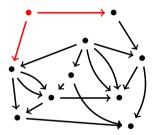
Noetherian Cycle Induction

Application: Free Groups 000 June 11, 2020 3/14



Problem: Prove a property for every *closed zig-zag* (from now on *cycle*) in a graph.

Assumptions: The graph is



Problem: Prove a property for every *closed zig-zag* (from now on *cycle*) in a graph.

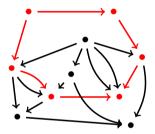
Assumptions: The graph is

locally confluent, and

Noetherian Cycle Induction

Application: Free Groups

June 11, 2020



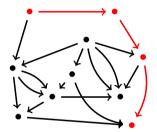
Problem: Prove a property for every *closed zig-zag* (from now on *cycle*) in a graph.

Assumptions: The graph is

locally confluent, and

Noetherian Cycle Induction

Application: Free Groups 000 June 11, 2020 4/14



Problem: Prove a property for every *closed zig-zag* (from now on *cycle*) in a graph.

Assumptions: The graph is

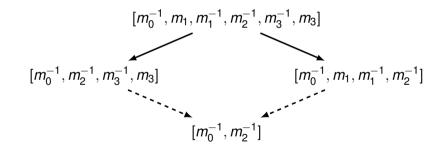
- locally confluent, and
- Noetherian (co-wellfounded).

Noetherian Cycle Induction

Application: Free Groups 000 June 11, 2020 4/14

Example: Reductions in Free Groups

Reduction steps on words in a free group on a set *M* form such a graph.



Noetherian Cycle Induction

Application: Free Groups 000 June 11, 2020 5/14 Our proposed solution consists of the following four steps:

- 1. Given a relation \rightsquigarrow on a set *A*, we define a new relation \rightsquigarrow° on cycles on *A*.
- 2. If \rightsquigarrow is Noetherian, then so is \rightsquigarrow° .
- If → further is locally confluent, then any cycle can be split into a → °-smaller cycle and a confluence cycle
- 4. Consequence: We can show a property *for all cycles* inductively by showing it *for empty cycles, confluence cycles, and merged cycles.*

Step 1: List Extension

Definition

The *list extension* of a relation \rightsquigarrow on A is a relation \rightsquigarrow^{L} on List(A) generated by

$$[\vec{a_1}, \vec{a}, \vec{a_2}] \rightsquigarrow^L [\vec{a_1}, x_0, x_1, \dots, x_k, \vec{a_2}]$$

where all x_i are such that $a \rightsquigarrow x_i$.

Step 1: List Extension

Definition

The *list extension* of a relation \rightsquigarrow on A is a relation \rightsquigarrow^{L} on List(A) generated by

$$[\vec{a_1}, \vec{a}, \vec{a_2}] \rightsquigarrow^L [\vec{a_1}, x_0, x_1, \dots, x_k, \vec{a_2}]$$

where all x_i are such that $a \rightsquigarrow x_i$.

Lemma

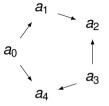
If \rightsquigarrow is Noetherian, so is \rightsquigarrow^{L} .

This is similar to the well-founded *multiset extension* by Tobias Nipkow.

A Graph Theoretic Problem 000 N. Kraus, J. von Raumer – Coherence via Well-Foundedness Noetherian Cycle Induction

Application: Free Groups

Step 2: A Relation on Cycles



Definition

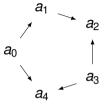
For γ a cycle, write $\varphi(\gamma)$ for the *vertex sequence* of γ . Write $\gamma \rightsquigarrow^{\circ} \delta$ if $\varphi(\gamma) \rightsquigarrow^{L} \varphi(\delta')$ for any rotation δ' of δ .

A Graph Theoretic Problem 000 N. Kraus, J. von Raumer – Coherence via Well-Foundedness Noetherian Cycle Induction

Application: Free Groups

June 11, 2020

Step 2: A Relation on Cycles



000000

Definition

For γ a cycle, write $\varphi(\gamma)$ for the *vertex sequence* of γ . Write $\gamma \rightsquigarrow^{\circ} \delta$ if $\varphi(\gamma) \rightsquigarrow^{L} \varphi(\delta')$ for any rotation δ' of δ .

Lemma

If \rightsquigarrow is Noetherian, so is \rightsquigarrow° (and thus also $\rightsquigarrow^{+\circ+}$).

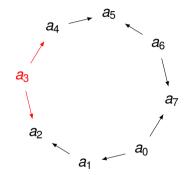
A Graph Theoretic Problem

N. Kraus, J. von Raumer - Coherence via Well-Foundedness

Noetherian Cycle Induction

Application: Free Groups 8/14 June 11, 2020

Step 3: Dissecting Cycles



Lemma

If a relation is Noetherian, then any of its cycles is empty or contains a span.

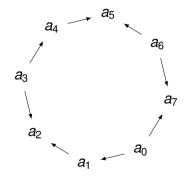
Noetherian Cycle Induction

Application: Free Groups

June 11, 2020

9/14

Step 3: Dissecting Cycles



Lemma

If a relation is Noetherian, then any of its cycles is empty or contains a span.

Theorem

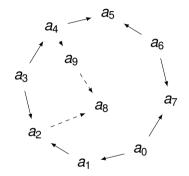
If \rightsquigarrow is Noetherian and locally confluent, then any cycle can be written as the "merge" of a $\rightsquigarrow^{+\circ+}$ -smaller cycle and a confluence diamond.

Noetherian Cycle Induction

Application: Free Groups

June 11, 2020

Step 3: Dissecting Cycles



Lemma

If a relation is Noetherian, then any of its cycles is empty or contains a span.

Theorem

If \rightsquigarrow is Noetherian and locally confluent, then any cycle can be written as the "merge" of a $\rightsquigarrow^{+\circ+}$ -smaller cycle and a confluence diamond.

Noetherian Cycle Induction

Application: Free Groups

June 11, 2020

Given a Noetherian and locally confluent relation \rightsquigarrow on a set A and a property P on its cycles, such that

• P is stable under rotating of cycles: $P(\alpha\gamma) \rightarrow P(\gamma\alpha)$,

- P is stable under rotating of cycles: $P(\alpha\gamma) \rightarrow P(\gamma\alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,

- *P* is stable under rotating of cycles: $P(\alpha \gamma) \rightarrow P(\gamma \alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,
- P holds for the empty cycle, and

- *P* is stable under rotating of cycles: $P(\alpha \gamma) \rightarrow P(\gamma \alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,
- P holds for the empty cycle, and
- P holds for confluence cycles

Given a Noetherian and locally confluent relation \rightsquigarrow on a set A and a property P on its cycles, such that

- *P* is stable under rotating of cycles: $P(\alpha \gamma) \rightarrow P(\gamma \alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,
- P holds for the empty cycle, and
- P holds for confluence cycles

Then, $P(\gamma)$ holds for any cycle γ .

Given a type A: Type and a Noetherian and locally confluent relation $\rightsquigarrow: A \rightarrow A \rightarrow$ Type. Let P: (cycles of \rightsquigarrow) \rightarrow Type be such that

- P is stable under rotating of cycles: $P(\alpha \gamma) \rightarrow P(\gamma \alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,
- P holds for the empty cycle, and
- P holds for confluence cycles

Then, $P(\gamma)$ holds for any cycle γ .

How to define the carrier of the free group on a set M?

1. As a (set-)quotient of words $List(M + M)/ \rightarrow$ where the \rightarrow is generated by

$$[\ldots, k, m, m^{-1}, l, \ldots] \rightsquigarrow [\ldots, k, l, \ldots].$$

How to define the carrier of the free group on a set M?

1. As a (set-)quotient of words $List(M + M)/ \rightarrow$ where the \rightarrow is generated by

$$[\ldots, k, m, m^{-1}, l, \ldots] \rightsquigarrow [\ldots, k, l, \ldots].$$

2. As the loop space $\Omega(H, \star)$ of the higher inductive type

data H: Type where $\star: H$ loops : $M \rightarrow (\star = \star)$

A Graph Theoretic Problem 000 N. Kraus, J. von Raumer – Coherence via Well-Foundedness Noetherian Cycle Induction

Application: Free Groups ••• June 11, 2020 12/14

How to define the carrier of the free group on a set M?

1. As a (set-)quotient of words $List(M + M)/ \rightarrow$ where the \rightarrow is generated by

$$[\ldots, k, m, m^{-1}, l, \ldots] \rightsquigarrow [\ldots, k, l, \ldots].$$

2. As the loop space $\Omega(H, \star)$ of the higher inductive type

data H: Type where $\star: H$ loops : $M \rightarrow (\star = \star)$

Open question: Do these coincide?

Noetherian Cycle Induction

How to define the carrier of the free group on a set M?

1. As a (set-)quotient of words $List(M + M)/ \rightarrow$ where the \rightarrow is generated by

$$[\ldots, k, m, m^{-1}, l, \ldots] \rightsquigarrow [\ldots, k, l, \ldots].$$

2. As the loop space $\Omega(H, \star)$ of the higher inductive type

```
data H : Type where

\star : H

loops : M \rightarrow (\star = \star)
```

Approximation: Do their 1-truncations coincide? Or: Is the fundamental group of the free group trivial?

A Graph Theoretic Problem 000 N. Kraus, J. von Raumer – Coherence via Well-Foundedness Noetherian Cycle Induction

Application: Free Groups •••• June 11, 2020 12/14

A Map Between the Definitions

Want to construct: a map $\text{List}(M + M)/ \rightarrow \|\Omega(H, \star)\|_1$

Lemma

Maps List $(M + M)/ \rightarrow \|\Omega(H, \star)\|_1$ are equivalently given by triples (f, h, c) where

$$f: \text{List}(M + M) \to \|\Omega(H, \star)\|_{1},$$

$$h: (\ell_{1} \rightsquigarrow \ell_{2}) \to f(\ell_{1}) = f(\ell_{2}),$$

$$c: h(\gamma) = \text{refl for every cycle } \gamma.$$

Just set $P(\gamma) := (h(\gamma) = \text{refl})$ and use cycle induction!

A Graph Theoretic Problem 000 N. Kraus, J. von Raumer – Coherence via Well-Foundedness Noetherian Cycle Induction

Application: Free Groups 000 June 11, 2020 13/14

Conclusions

- We found a way to tackle proofs about cycles
- We used it to solve approximations to open problems
- The contents formalised in the Lean theorem prover (~ 1600 LoC)
- We are exploring applicability
 - to other open problems in HoTT
 - to the field of higher-dimensional rewriting (Thanks to Vincent van Oostrom for his remarks!)
- The speaker of this talk is up for hire!

Title Image: photograph by Pascal Dihé, distributed under a CC BY-SA 4.0 license